25 research outputs found

    Method and system for control of upstream flowfields of vehicle in supersonic or hypersonic atmospheric flight

    Get PDF
    The upstream flowfield of a vehicle traveling in supersonic or hypersonic atmospheric flight is actively controlled using attribute(s) experienced by the vehicle. Sensed attribute(s) include pressure along the vehicle's outer mold line, temperature along the vehicle's outer mold line, heat flux along the vehicle's outer mold line, and/or local acceleration response of the vehicle. A non-heated, non-plasma-producing gas is injected into an upstream flowfield of the vehicle from at least one surface location along the vehicle's outer mold line. The pressure of the gas so-injected is adjusted based on the attribute(s) so-sensed

    Aerodynamic Tests of the Space Launch System for Database Development

    Get PDF
    The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations

    Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets

    Get PDF
    One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure

    The Dynamics of Shock Dispersion and Interactions in Supersonic Freestreams with Counterflowing Jets

    Get PDF
    An active flow control concept using counterflowing jets to significantly modify the external flowfields and strongly weaken or disperse the shock-waves of supersonic and hypersonic vehicles to reduce the aerothermal loads and wave drag was investigated. Experiments were conducted in a trisonic blow-down wind-tunnel, complemented by pre-test computational fluid dynamics (CFD) analysis of a 2.6% scale model of Apollo capsule, with and without counterflowing jets, in Mach 3.48 and 4.0 freestreams, to assess the potential aerothermal and aerodynamic benefits of this concept. The model was instrumented with heat flux gauges, thermocouples and pressure taps, and employed five counterflowing jet nozzles (three sonic and other two supersonic with design Mach numbers of 2.44 and 2.94) and nozzle exit diameters ranging from 0.25 to 0.5 inch. Schlieren data show that at low jet flow rates of 0.05 and 0.1lb(sub m)/sec, the interactions result in a long penetration mode (LPM) jet, while the short penetration mode (SPM) jet is observed at flow rates greater than 0.1 lb(sub m)/sec., consistent with the pre-test CFD predictions. For the LPM, the jet appears to be nearly fully-expanded, resulting in a very unsteady and oscillatory flow structure in which the bow shock becomes highly dispersed such that it is no longer discernable. Higher speed camera Schlieren data reveal the shock to be dispersed into striations of compression waves, which suddenly coalesce to a weaker bow shock with a larger standoff distance as the flow rate reached a critical value. The pronounced shock dispersion could significantly impact the aerodynamic performance (L/D) and heat flux reduction of spacecraft in atmospheric entry and re-entry, and could also attenuate the entropy layer in hypersonic blunt body flows. For heat transfer, the results show significant reduction in heat flux, even giving negative heat flux for some of the SPM interactions, indicating that the flow wetting the model is cooling, instead of heating the model, which could significantly impact the requirements and design of thermal protection system. These findings strongly suggest that the application of counterflowing jets as active flow control could have strong impact on supersonic and hypersonic vehicle design and performance

    Method and System for Weakening Shock Wave Strength at Leading Edge Surfaces of Vehicle in Supersonic Atmospheric Flight

    Get PDF
    A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated

    Testimony on Pennsylvania SB1306: No Additional Protections for Religious Freedom

    Get PDF
    On behalf of the Public Rights/Private Conscience Project (PRPCP) at Columbia Law School I offer the following legal analysis of Senate Bill 1306. Overall, the current version of the bill promises to modernize Pennsylvania’s Human Relations Act by expanding antidiscrimination protections in employment to include sexual orientation and gender identity-based discrimination. Were the Pennsylvania legislature to pass SB 1306, the Commonwealth would join twenty-two states that include sexual orientation and nineteen states that include gender identity in their laws assuring equal employment opportunities for their citizens

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation

    Testimony on Pennsylvania SB1306: No Additional Protections for Religious Freedom

    No full text
    On behalf of the Public Rights/Private Conscience Project (PRPCP) at Columbia Law School I offer the following legal analysis of Senate Bill 1306. Overall, the current version of the bill promises to modernize Pennsylvania’s Human Relations Act by expanding antidiscrimination protections in employment to include sexual orientation and gender identity-based discrimination. Were the Pennsylvania legislature to pass SB 1306, the Commonwealth would join twenty-two states that include sexual orientation and nineteen states that include gender identity in their laws assuring equal employment opportunities for their citizens

    Produtividade agregada brasileira (1970-2000): declínio robusto e fraca recuperação

    Get PDF
    Este artigo discute o comportamento da Produtividade Total dos Fatores (PTF) no Brasil entre 1970 e 1998. É feita uma análise de quanto da queda da PTF pode ser explicado a partir de mudanças na forma tradicional de cálculo desta variável. Entre as variações serão consideradas: utilização da capacidade instalada, modificações no uso do capital, mensuração do capital por meio do consumo de eletricidade, distorções no preço relativo, capital humano e investimento específico à determinada tecnologia. O único caso no qual a PTF apresenta uma modificação em seu comportamento é o de correção de distorções no preço relativo, em que a PTF se recupera mais rapidamente.<br>This study explores the productivity performance of the Brazilian economy between 1970 and 1998. We assess how much of the TFP downfall can be explained by some departures from the standard procedure. We incorporate to the standard measure utilization of capacity, changes in the workweek of capital, services of capital from electricity consumption, relative prices distortions, human capital, and investment in specific technology. We conclude that the downfall in productivity is quite robust to those specifications. The only case that presents a marked difference from the standard TFP measure occurs when relative prices of capital are corrected. The implications of this finding are a topic for future research
    corecore